Last updated: 2025-05-05

Checks: 7 0

Knit directory: Ulceration_paper_github/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250330) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d6bee9b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/cibersort_res_ulc.rds
    Ignored:    data/cibersort_res_ulc_lf.rds
    Ignored:    omnipathr-log/
    Ignored:    output/ulceration_combined_panel.pdf

Untracked files:
    Untracked:  .Rhistory
    Untracked:  volcanoplot.pdf

Unstaged changes:
    Modified:   .gitignore

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/figure3_deconvolution.Rmd) and HTML (docs/figure3_deconvolution.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d6bee9b Estef Vazquez 2025-05-05 Update
html b4cc4b3 Estef Vazquez 2025-05-05 Build site.
html 60dfca2 Estef Vazquez 2025-05-05 Build site.
Rmd cb08ced Estef Vazquez 2025-05-05 Loading deconv

Immune Cell Type Composition

Loading Libraries and Data

library(tidyverse)
library(ggplot2)
library(forcats)
library(ggpubr) 
library(here)


# Load results
cibersort <- readRDS(here("data", "cibersort_res_ulc_lf.rds"))

# Load combined data with ulceration status
ciber_with_groups <- readRDS(here("data", "cibersort_res_ulc.rds"))

# Gather - long format
ciber_gath <- ciber_with_groups %>%
  pivot_longer(
    cols = -c(sample_id, ulceration),  
    names_to = "cell_type",
    values_to = "proportion"
  )

# Order by proportion
ciber_gath <- ciber_gath %>% mutate(cell_type = fct_reorder(cell_type, proportion))

sample_order <- ciber_gath %>%
  filter(cell_type == "Plasma_cells") %>%
  arrange(ulceration, proportion) %>%
  pull(sample_id)

ciber_ordered <- ciber_gath %>%
  mutate(sample_id = factor(sample_id, levels = sample_order))
# Color palette 
immune_palette <- c(
  '#00441B', '#f29175', 'brown', '#B299A7', 'blue', 'lightblue', 'olivedrab', 'orange', 
  '#3F007D', '#8DA0CB', '#CC0066', "#CB181D", '#74a9cf', 'pink', 'deeppink4', 'cadetblue1',
  '#241178', '#66C2A5', "#E78AC3", "#FFD92F", "#CA9E78", "#3F007D"
)

# Define colors and theme
ulceration_colors <- list(
  fill = c("0" = "#730769", "1" = "#E8CC03"), 
  point = c("0" = "#4A044E", "1" = "#938202")  
)

publication_theme <- theme_minimal() +
  theme(
    plot.title = element_text(size = 14, face = "bold", hjust = 0.5, margin = margin(b = 20)),
    axis.title = element_text(size = 12, face = "bold"),
    axis.text = element_text(size = 10, color = "black"),
    legend.position = "top",
    legend.title = element_text(size = 10, face = "bold"),
    legend.text = element_text(size = 9),
    legend.margin = margin(t = 10, b = 10),
    panel.grid = element_blank(),
    plot.margin = margin(10, 20, 20, 10)
  )

Data Preparation

# Wide to long format
prepare_long_format <- function(data) {
  # Check if data contains required columns
  if("cell_type" %in% colnames(data) && "proportion" %in% colnames(data)) {
    return(data)  
  }
  
  if("ulceration" %in% colnames(data)) {
    # Wide to long preserving ulceration
    data %>% pivot_longer(
      cols = -c(sample_id, ulceration),
      names_to = "cell_type",
      values_to = "proportion"
    )
  } else {
    # Transform wide to long without ulceration
    data %>% pivot_longer(
      cols = -sample_id,
      names_to = "cell_type",
      values_to = "proportion"
    )
  }
}


# Order samples by cell type proportion
order_samples <- function(data, order_by_cell = "Plasma_cells", group_by = NULL) {
  data_long <- prepare_long_format(data)
  # Filter for specified cell type
  cell_data <- data_long %>% filter(cell_type == order_by_cell)
  
  # Order samples 
  if(!is.null(group_by) && group_by %in% colnames(data_long)) {
    #  within groups
    sample_order <- cell_data %>%
      arrange(!!sym(group_by), proportion) %>%
      pull(sample_id)
  } else {
    #  overall
    sample_order <- cell_data %>%
      arrange(proportion) %>%
      pull(sample_id)
  }
  
  data_long %>% mutate(sample_id = factor(sample_id, levels = sample_order))
}

# Prepare data for comparison of cell types
prepare_cell_data <- function(data, cell_column) {
  data %>% 
    select(sample_id, !!sym(cell_column), ulceration) %>%
    gather(key = "cell_type", value = "proportion", -sample_id, -ulceration)
}

Plotting

# Grouped stacked barplot by ulceration 
plot_grouped_barplot <- function(data, title = "Immune Cell Composition by Ulceration Status") {
  if(!("ulceration" %in% colnames(data))) {
    stop("Data must contain 'ulceration' column for grouped barplot")
  }
  
  ggplot(data, aes(x = sample_id, y = proportion, fill = cell_type)) +
    geom_col(position = "fill", width = 0.8) +
    scale_fill_manual(values = immune_palette) +
    scale_y_continuous(labels = scales::percent, breaks = seq(0, 1, 0.2)) +
    facet_grid(~ ulceration, scales = "free_x", space = "free_x",
               labeller = labeller(ulceration = c("0" = "Non-ulcerated", "1" = "Ulcerated"))) +
    labs(
      title = title,
      x = "Samples",
      y = "Estimated Cell Proportion (CIBERSORTx)",
      fill = "Immune Cell Type"
    ) +
    theme_minimal() +
    theme(
      plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
      plot.subtitle = element_text(size = 12, hjust = 0.5),
      axis.text.x = element_text(angle = 90, hjust = 1, size = 8),
      axis.text.y = element_text(size = 10),
      axis.title = element_text(size = 12, face = "bold"),
      legend.title = element_text(size = 10, face = "bold"),
      legend.text = element_text(size = 9),
      panel.grid.major.x = element_blank(),
      panel.grid.minor = element_blank(),
      strip.text = element_text(size = 12, face = "bold"), 
      strip.background = element_rect(fill = "white"),    
      panel.spacing = unit(1, "lines")                      
    )
}


# Boxplot
plot_cell_boxplot <- function(
  data, 
  cell_name,
  y_max = NULL,     
  y_increment = NULL 
) {
  if(is.null(y_max)) {
    y_max <- ceiling(max(data$proportion) * 1.2 * 100) / 100
  }
  
  if(is.null(y_increment)) {
    y_increment <- y_max / 5
  }
  stat_pos <- y_max * 0.8
  
  ggplot(data, aes(x = cell_type, y = proportion, fill = ulceration)) +
    geom_boxplot(
      outlier.shape = NA,
      width = 0.5,
      alpha = 0.8
    ) +
    geom_point(
      aes(color = ulceration),
      size = 2,
      alpha = 0.6,
      position = position_jitterdodge(
        jitter.width = 0.15,
        dodge.width = 0.5,
        seed = 123
      )
    ) +
    scale_fill_manual(
      values = ulceration_colors$fill,
      name = "Ulceration Status",
      labels = c("0" = "Non-ulcerated", "1" = "Ulcerated")
    ) +
    scale_color_manual(
      values = ulceration_colors$point,
      guide = "none"
    ) +
    scale_y_continuous(
      limits = c(0, y_max),
      breaks = seq(0, y_max, by = y_increment),
      labels = scales::number_format(accuracy = 0.01),
      expand = expansion(mult = c(0.05, 0.1))
    ) +
    stat_compare_means(
      aes(group = ulceration),
      label.y = stat_pos,
      size = 4,
      label = "p.format",
      label.x.npc = "center"
    ) +
    labs(
      title = paste0(cell_name, " in Acral Melanoma"),
      y = "Cell Proportion (CIBERSORTx)",
      caption = "Statistical test: Wilcoxon rank-sum test"
    ) +
    publication_theme +
    theme(axis.text.x = element_text(angle = 0, hjust = 0.5))
}

Visualization

Immune Cell Composition by Ulceration Status

# Create grouped barplot
plot_grouped_barplot(
  ciber_ordered,
  title = "Immune Cell Composition by Ulceration Status in Acral Melanoma"
)

Version Author Date
60dfca2 Estef Vazquez 2025-05-05

Plasma Cells

plasma_data <- prepare_cell_data(ciber_with_groups, "Plasma_cells")

plot_cell_boxplot(
  plasma_data,
  "Plasma Cells",
  y_max = 1,
  y_increment = 0.2
)

Version Author Date
60dfca2 Estef Vazquez 2025-05-05

Eosinophils

eosinophils_data <- prepare_cell_data(ciber_with_groups, "Eosinophils")

plot_cell_boxplot(
  eosinophils_data,
  "Eosinophils",
  y_max = 0.2,  
  y_increment = 0.02
)

Version Author Date
60dfca2 Estef Vazquez 2025-05-05

Macrophages M0

macrophages_m0_data <- prepare_cell_data(ciber_with_groups, "Macrophages_M0")

plot_cell_boxplot(
  macrophages_m0_data,
  "Macrophages M0",
  y_max = 1,  
  y_increment = 0.2
)

Version Author Date
60dfca2 Estef Vazquez 2025-05-05

Session Information

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=es_MX.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=es_MX.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=es_MX.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=es_MX.UTF-8 LC_IDENTIFICATION=C       

time zone: America/Mexico_City
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] here_1.0.1      ggpubr_0.6.0    lubridate_1.9.4 forcats_1.0.0  
 [5] stringr_1.5.1   dplyr_1.1.4     purrr_1.0.2     readr_2.1.5    
 [9] tidyr_1.3.1     tibble_3.2.1    ggplot2_3.5.1   tidyverse_2.0.0
[13] workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] gtable_0.3.6      xfun_0.49         bslib_0.8.0       processx_3.8.4   
 [5] rstatix_0.7.2     callr_3.7.6       tzdb_0.4.0        vctrs_0.6.5      
 [9] tools_4.4.0       ps_1.8.1          generics_0.1.3    pkgconfig_2.0.3  
[13] lifecycle_1.0.4   compiler_4.4.0    farver_2.1.2      git2r_0.33.0     
[17] munsell_0.5.1     getPass_0.2-4     carData_3.0-5     httpuv_1.6.15    
[21] htmltools_0.5.8.1 sass_0.4.9        yaml_2.3.10       Formula_1.2-5    
[25] later_1.4.1       pillar_1.10.0     car_3.1-3         jquerylib_0.1.4  
[29] whisker_0.4.1     cachem_1.1.0      abind_1.4-5       tidyselect_1.2.1 
[33] digest_0.6.37     stringi_1.8.4     rprojroot_2.0.4   fastmap_1.2.0    
[37] grid_4.4.0        colorspace_2.1-1  cli_3.6.3         magrittr_2.0.3   
[41] broom_1.0.7       withr_3.0.2       scales_1.3.0      promises_1.3.2   
[45] backports_1.5.0   timechange_0.3.0  rmarkdown_2.29    httr_1.4.7       
[49] ggsignif_0.6.4    hms_1.1.3         evaluate_1.0.1    knitr_1.49       
[53] rlang_1.1.4       Rcpp_1.0.13-1     glue_1.8.0        rstudioapi_0.17.1
[57] jsonlite_1.8.9    R6_2.5.1          fs_1.6.5         

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=es_MX.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=es_MX.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=es_MX.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=es_MX.UTF-8 LC_IDENTIFICATION=C       

time zone: America/Mexico_City
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] here_1.0.1      ggpubr_0.6.0    lubridate_1.9.4 forcats_1.0.0  
 [5] stringr_1.5.1   dplyr_1.1.4     purrr_1.0.2     readr_2.1.5    
 [9] tidyr_1.3.1     tibble_3.2.1    ggplot2_3.5.1   tidyverse_2.0.0
[13] workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] gtable_0.3.6      xfun_0.49         bslib_0.8.0       processx_3.8.4   
 [5] rstatix_0.7.2     callr_3.7.6       tzdb_0.4.0        vctrs_0.6.5      
 [9] tools_4.4.0       ps_1.8.1          generics_0.1.3    pkgconfig_2.0.3  
[13] lifecycle_1.0.4   compiler_4.4.0    farver_2.1.2      git2r_0.33.0     
[17] munsell_0.5.1     getPass_0.2-4     carData_3.0-5     httpuv_1.6.15    
[21] htmltools_0.5.8.1 sass_0.4.9        yaml_2.3.10       Formula_1.2-5    
[25] later_1.4.1       pillar_1.10.0     car_3.1-3         jquerylib_0.1.4  
[29] whisker_0.4.1     cachem_1.1.0      abind_1.4-5       tidyselect_1.2.1 
[33] digest_0.6.37     stringi_1.8.4     rprojroot_2.0.4   fastmap_1.2.0    
[37] grid_4.4.0        colorspace_2.1-1  cli_3.6.3         magrittr_2.0.3   
[41] broom_1.0.7       withr_3.0.2       scales_1.3.0      promises_1.3.2   
[45] backports_1.5.0   timechange_0.3.0  rmarkdown_2.29    httr_1.4.7       
[49] ggsignif_0.6.4    hms_1.1.3         evaluate_1.0.1    knitr_1.49       
[53] rlang_1.1.4       Rcpp_1.0.13-1     glue_1.8.0        rstudioapi_0.17.1
[57] jsonlite_1.8.9    R6_2.5.1          fs_1.6.5