Last updated: 2025-05-05
Checks: 7 0
Knit directory: Ulceration_paper_github/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20250330)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d6bee9b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/cibersort_res_ulc.rds
Ignored: data/cibersort_res_ulc_lf.rds
Ignored: omnipathr-log/
Ignored: output/ulceration_combined_panel.pdf
Untracked files:
Untracked: .Rhistory
Untracked: volcanoplot.pdf
Unstaged changes:
Modified: .gitignore
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/figure3_deconvolution.Rmd
)
and HTML (docs/figure3_deconvolution.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | d6bee9b | Estef Vazquez | 2025-05-05 | Update |
html | b4cc4b3 | Estef Vazquez | 2025-05-05 | Build site. |
html | 60dfca2 | Estef Vazquez | 2025-05-05 | Build site. |
Rmd | cb08ced | Estef Vazquez | 2025-05-05 | Loading deconv |
library(tidyverse)
library(ggplot2)
library(forcats)
library(ggpubr)
library(here)
# Load results
cibersort <- readRDS(here("data", "cibersort_res_ulc_lf.rds"))
# Load combined data with ulceration status
ciber_with_groups <- readRDS(here("data", "cibersort_res_ulc.rds"))
# Gather - long format
ciber_gath <- ciber_with_groups %>%
pivot_longer(
cols = -c(sample_id, ulceration),
names_to = "cell_type",
values_to = "proportion"
)
# Order by proportion
ciber_gath <- ciber_gath %>% mutate(cell_type = fct_reorder(cell_type, proportion))
sample_order <- ciber_gath %>%
filter(cell_type == "Plasma_cells") %>%
arrange(ulceration, proportion) %>%
pull(sample_id)
ciber_ordered <- ciber_gath %>%
mutate(sample_id = factor(sample_id, levels = sample_order))
# Color palette
immune_palette <- c(
'#00441B', '#f29175', 'brown', '#B299A7', 'blue', 'lightblue', 'olivedrab', 'orange',
'#3F007D', '#8DA0CB', '#CC0066', "#CB181D", '#74a9cf', 'pink', 'deeppink4', 'cadetblue1',
'#241178', '#66C2A5', "#E78AC3", "#FFD92F", "#CA9E78", "#3F007D"
)
# Define colors and theme
ulceration_colors <- list(
fill = c("0" = "#730769", "1" = "#E8CC03"),
point = c("0" = "#4A044E", "1" = "#938202")
)
publication_theme <- theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5, margin = margin(b = 20)),
axis.title = element_text(size = 12, face = "bold"),
axis.text = element_text(size = 10, color = "black"),
legend.position = "top",
legend.title = element_text(size = 10, face = "bold"),
legend.text = element_text(size = 9),
legend.margin = margin(t = 10, b = 10),
panel.grid = element_blank(),
plot.margin = margin(10, 20, 20, 10)
)
# Wide to long format
prepare_long_format <- function(data) {
# Check if data contains required columns
if("cell_type" %in% colnames(data) && "proportion" %in% colnames(data)) {
return(data)
}
if("ulceration" %in% colnames(data)) {
# Wide to long preserving ulceration
data %>% pivot_longer(
cols = -c(sample_id, ulceration),
names_to = "cell_type",
values_to = "proportion"
)
} else {
# Transform wide to long without ulceration
data %>% pivot_longer(
cols = -sample_id,
names_to = "cell_type",
values_to = "proportion"
)
}
}
# Order samples by cell type proportion
order_samples <- function(data, order_by_cell = "Plasma_cells", group_by = NULL) {
data_long <- prepare_long_format(data)
# Filter for specified cell type
cell_data <- data_long %>% filter(cell_type == order_by_cell)
# Order samples
if(!is.null(group_by) && group_by %in% colnames(data_long)) {
# within groups
sample_order <- cell_data %>%
arrange(!!sym(group_by), proportion) %>%
pull(sample_id)
} else {
# overall
sample_order <- cell_data %>%
arrange(proportion) %>%
pull(sample_id)
}
data_long %>% mutate(sample_id = factor(sample_id, levels = sample_order))
}
# Prepare data for comparison of cell types
prepare_cell_data <- function(data, cell_column) {
data %>%
select(sample_id, !!sym(cell_column), ulceration) %>%
gather(key = "cell_type", value = "proportion", -sample_id, -ulceration)
}
# Grouped stacked barplot by ulceration
plot_grouped_barplot <- function(data, title = "Immune Cell Composition by Ulceration Status") {
if(!("ulceration" %in% colnames(data))) {
stop("Data must contain 'ulceration' column for grouped barplot")
}
ggplot(data, aes(x = sample_id, y = proportion, fill = cell_type)) +
geom_col(position = "fill", width = 0.8) +
scale_fill_manual(values = immune_palette) +
scale_y_continuous(labels = scales::percent, breaks = seq(0, 1, 0.2)) +
facet_grid(~ ulceration, scales = "free_x", space = "free_x",
labeller = labeller(ulceration = c("0" = "Non-ulcerated", "1" = "Ulcerated"))) +
labs(
title = title,
x = "Samples",
y = "Estimated Cell Proportion (CIBERSORTx)",
fill = "Immune Cell Type"
) +
theme_minimal() +
theme(
plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
plot.subtitle = element_text(size = 12, hjust = 0.5),
axis.text.x = element_text(angle = 90, hjust = 1, size = 8),
axis.text.y = element_text(size = 10),
axis.title = element_text(size = 12, face = "bold"),
legend.title = element_text(size = 10, face = "bold"),
legend.text = element_text(size = 9),
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
strip.text = element_text(size = 12, face = "bold"),
strip.background = element_rect(fill = "white"),
panel.spacing = unit(1, "lines")
)
}
# Boxplot
plot_cell_boxplot <- function(
data,
cell_name,
y_max = NULL,
y_increment = NULL
) {
if(is.null(y_max)) {
y_max <- ceiling(max(data$proportion) * 1.2 * 100) / 100
}
if(is.null(y_increment)) {
y_increment <- y_max / 5
}
stat_pos <- y_max * 0.8
ggplot(data, aes(x = cell_type, y = proportion, fill = ulceration)) +
geom_boxplot(
outlier.shape = NA,
width = 0.5,
alpha = 0.8
) +
geom_point(
aes(color = ulceration),
size = 2,
alpha = 0.6,
position = position_jitterdodge(
jitter.width = 0.15,
dodge.width = 0.5,
seed = 123
)
) +
scale_fill_manual(
values = ulceration_colors$fill,
name = "Ulceration Status",
labels = c("0" = "Non-ulcerated", "1" = "Ulcerated")
) +
scale_color_manual(
values = ulceration_colors$point,
guide = "none"
) +
scale_y_continuous(
limits = c(0, y_max),
breaks = seq(0, y_max, by = y_increment),
labels = scales::number_format(accuracy = 0.01),
expand = expansion(mult = c(0.05, 0.1))
) +
stat_compare_means(
aes(group = ulceration),
label.y = stat_pos,
size = 4,
label = "p.format",
label.x.npc = "center"
) +
labs(
title = paste0(cell_name, " in Acral Melanoma"),
y = "Cell Proportion (CIBERSORTx)",
caption = "Statistical test: Wilcoxon rank-sum test"
) +
publication_theme +
theme(axis.text.x = element_text(angle = 0, hjust = 0.5))
}
# Create grouped barplot
plot_grouped_barplot(
ciber_ordered,
title = "Immune Cell Composition by Ulceration Status in Acral Melanoma"
)
Version | Author | Date |
---|---|---|
60dfca2 | Estef Vazquez | 2025-05-05 |
plasma_data <- prepare_cell_data(ciber_with_groups, "Plasma_cells")
plot_cell_boxplot(
plasma_data,
"Plasma Cells",
y_max = 1,
y_increment = 0.2
)
Version | Author | Date |
---|---|---|
60dfca2 | Estef Vazquez | 2025-05-05 |
eosinophils_data <- prepare_cell_data(ciber_with_groups, "Eosinophils")
plot_cell_boxplot(
eosinophils_data,
"Eosinophils",
y_max = 0.2,
y_increment = 0.02
)
Version | Author | Date |
---|---|---|
60dfca2 | Estef Vazquez | 2025-05-05 |
macrophages_m0_data <- prepare_cell_data(ciber_with_groups, "Macrophages_M0")
plot_cell_boxplot(
macrophages_m0_data,
"Macrophages M0",
y_max = 1,
y_increment = 0.2
)
Version | Author | Date |
---|---|---|
60dfca2 | Estef Vazquez | 2025-05-05 |
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=es_MX.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=es_MX.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=es_MX.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=es_MX.UTF-8 LC_IDENTIFICATION=C
time zone: America/Mexico_City
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] here_1.0.1 ggpubr_0.6.0 lubridate_1.9.4 forcats_1.0.0
[5] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2 readr_2.1.5
[9] tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0
[13] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] gtable_0.3.6 xfun_0.49 bslib_0.8.0 processx_3.8.4
[5] rstatix_0.7.2 callr_3.7.6 tzdb_0.4.0 vctrs_0.6.5
[9] tools_4.4.0 ps_1.8.1 generics_0.1.3 pkgconfig_2.0.3
[13] lifecycle_1.0.4 compiler_4.4.0 farver_2.1.2 git2r_0.33.0
[17] munsell_0.5.1 getPass_0.2-4 carData_3.0-5 httpuv_1.6.15
[21] htmltools_0.5.8.1 sass_0.4.9 yaml_2.3.10 Formula_1.2-5
[25] later_1.4.1 pillar_1.10.0 car_3.1-3 jquerylib_0.1.4
[29] whisker_0.4.1 cachem_1.1.0 abind_1.4-5 tidyselect_1.2.1
[33] digest_0.6.37 stringi_1.8.4 rprojroot_2.0.4 fastmap_1.2.0
[37] grid_4.4.0 colorspace_2.1-1 cli_3.6.3 magrittr_2.0.3
[41] broom_1.0.7 withr_3.0.2 scales_1.3.0 promises_1.3.2
[45] backports_1.5.0 timechange_0.3.0 rmarkdown_2.29 httr_1.4.7
[49] ggsignif_0.6.4 hms_1.1.3 evaluate_1.0.1 knitr_1.49
[53] rlang_1.1.4 Rcpp_1.0.13-1 glue_1.8.0 rstudioapi_0.17.1
[57] jsonlite_1.8.9 R6_2.5.1 fs_1.6.5
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=es_MX.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=es_MX.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=es_MX.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=es_MX.UTF-8 LC_IDENTIFICATION=C
time zone: America/Mexico_City
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] here_1.0.1 ggpubr_0.6.0 lubridate_1.9.4 forcats_1.0.0
[5] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2 readr_2.1.5
[9] tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0
[13] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] gtable_0.3.6 xfun_0.49 bslib_0.8.0 processx_3.8.4
[5] rstatix_0.7.2 callr_3.7.6 tzdb_0.4.0 vctrs_0.6.5
[9] tools_4.4.0 ps_1.8.1 generics_0.1.3 pkgconfig_2.0.3
[13] lifecycle_1.0.4 compiler_4.4.0 farver_2.1.2 git2r_0.33.0
[17] munsell_0.5.1 getPass_0.2-4 carData_3.0-5 httpuv_1.6.15
[21] htmltools_0.5.8.1 sass_0.4.9 yaml_2.3.10 Formula_1.2-5
[25] later_1.4.1 pillar_1.10.0 car_3.1-3 jquerylib_0.1.4
[29] whisker_0.4.1 cachem_1.1.0 abind_1.4-5 tidyselect_1.2.1
[33] digest_0.6.37 stringi_1.8.4 rprojroot_2.0.4 fastmap_1.2.0
[37] grid_4.4.0 colorspace_2.1-1 cli_3.6.3 magrittr_2.0.3
[41] broom_1.0.7 withr_3.0.2 scales_1.3.0 promises_1.3.2
[45] backports_1.5.0 timechange_0.3.0 rmarkdown_2.29 httr_1.4.7
[49] ggsignif_0.6.4 hms_1.1.3 evaluate_1.0.1 knitr_1.49
[53] rlang_1.1.4 Rcpp_1.0.13-1 glue_1.8.0 rstudioapi_0.17.1
[57] jsonlite_1.8.9 R6_2.5.1 fs_1.6.5